当前位置:新闻 -> 新技术 -> 科学家研究出可编程的CRISPR反应性智能材料
科学家研究出可编程的CRISPR反应性智能材料
时间:2019-08-28 09:40:01  作者:微微  来源:生物谷
在一项新的研究中,来自美国哈佛大学威斯生物启发工程研究所和麻省理工学院的研究人员展示了将CRISPR用作新型刺激反应性“智能(smart)”材料的控制元件。
  据再生医学网了解,CRISPR-Cas基因编辑技术曾被《科学》杂志列为2013年年度十大科技进展之一,它承载了科学家很多的希望,在校正基因缺陷和检测患者体内病原体和治病突变中大放异彩。下面再生医学网就为您推送一条相关资讯。
  如今,在一项新的研究中,来自美国哈佛大学威斯生物启发工程研究所和麻省理工学院的研究人员展示了将CRISPR用作新型刺激反应性“智能(smart)”材料的控制元件。一旦被特定的天然的或用户定义的DNA刺激物激活,一种CRISPR-Cas酶就能够让多种智能材料释放出自身结合的货物,比如染料和活性酶,改变它们的结构来部署包埋的纳米颗粒和活细胞,或者调节电路从而将生物信号转化为电信号。相关研究结果发表在2019年8月23日的Science期刊上,论文标题为“Programmable CRISPR-responsive smart materials”。

研究示图(图片来源于Science)
  论文通讯作者、哈佛大学威斯生物启发工程研究所创始核心学院成员James Collins博士说,“我们的研究表明CRISPR的力量可以在实验室之外用于控制DNA反应性材料的行为。我们开发了一系列具有不同能力的材料,这就突显了可编程的CRISPR反应性智能材料(CRISPR-responsive smart material)所支持的应用范围。这些应用包括新型治疗诊断策略、即时诊断以及对流行病爆发和环境危害进行的区域监测。”
  CRISPR-Cas系统因其能够利用短的互补性向导RNA(gRNA)在基因组中找到几乎任何靶序列并且能够以手术精确度切割和修复DNA双链而获得了巨大的声誉。在这项新的研究中,这些研究人员使用了一种来自毛螺菌(Lachnospiraceae)的称为Cas12a的Cas酶变体,这种酶变体具有识别和切割特定DNA序列的能力,但是,重要的是,经这种切割事件激活后,它接着以每秒大约1250次的周转速率非特异性地切割特定DNA序列附近的单链DNA。
  论文共同第一作者、麻省理工学院研究生Max English说,“我们将单链靶DNA序列整合到聚合物材料中,要么作为悬垂货物的锚点,要么作为维持材料基本完整性的结构元件,并且能够通过提供Cas12a和一种作为刺激物的特定gRNA来控制不同的材料行为。”
  CRISPR反应性材料用于小型货物递送
  这些研究人员通过双链DNA锚定序列将不同的有效载荷附着到一种所谓的聚(乙二醇)水凝胶材料上。论文共同第一作者、Collins团队博士后研究员Helena de Puig博士说,“在互补的gRNA存在下,附近的Cas12a酶靶向这些锚定序列,随后让它们遭受降解。因此,我们可以释放有效负载,比如荧光分子和酶,这种释放速率取决于gRNA/靶DNA的相对亲和力,以及硬编码到水凝胶中的特性,比如它们的孔径和与水凝胶材料交联在一起的靶向锚定序列的密度。”他们认为,这种方法可用于开发具有诊断能力的材料,也可用于环境监测。
  刺激后释放包埋的纳米颗粒和细胞
  这些研究人员在在更大的范围内研究了他们的方法,以促使包埋纳米颗粒和活细胞的聚丙烯酰胺(polyacrylamide, PA)水凝胶发生结构变化。论文共同第一作者、Collins团队的研究生Raphael Gayet说,“在这项新的研究中,我们利用Cas12a靶序列将PA链彼此交联在一起,从而起到结构元件的作用。通过触发Cas12a活性移除交联剂可促进整个水凝胶基质发生机械变化,从而允许金纳米颗粒和人原代细胞释放出来。论文共同第一作者、Collins团队的研究生Raphael Gayet说,“这种方法可用于将细胞释放到组织支架中。”

图片来源于网络
  生物材料作为保险丝和可控阀
  在另一种不同的方向上,Collins和他的团队设计了CRISPR反应性智能材料,可以作为保险丝和调节流体通过的可控阀。这些研究人员利用炭黑(一种良好的电导体)和随机单链DNA片段制成的纳米颗粒混合物覆盖电极,并用含有Cas12a和特定双链靶DNA的溶液包围这些电极。论文共同作者、Collins 团队成员Nicolaas Angenent-Mari 说,“这种材料本身就能够让电流在电极之间流动。然而,当我们触发Cas12a依赖性的嵌入DNA降解时,这种材料受到破坏,从而导致电流中断。”
  在纸基微流体装置中,这些研究人员组装了一叠折叠的微型垫,每个微型垫都具有特定的功能。在Cas12a特异性双链DNA触发剂不存在或存在的情况下,他们让与DNA交联在一起的PA水凝胶与Cas12a发生预反应,并用它覆盖中间垫。然而,这种水凝胶仅在没有Cas12a触发的DNA的情况下形成,并且当添加到中间垫上时,这会堵塞它的孔。这接着阻断了携带电解质的缓冲液从这叠微型垫的顶部流动到电极所在的底部。
  相反之下,Cas12a触发的DNA的存在阻止了这种水凝胶发生的交联,从而使得这种缓冲液流动并在电极上产生电流,因而基本上发挥着电阻器的作用。论文共同第一作者Luis Soenksen说,“通过这种方法,我们将对应于埃博拉病毒特异性RNA的DNA检测与电信号相结合在一起,甚至可以利用偶联RFID天线实时传输信号。”
  哈佛大学威斯生物启发工程研究所创始主任Donald Ingber博士说,“Collins及其团队在威斯生物启发工程研究所的活细胞平台上开展的这项突破性研究展示了CRISPR技术在全新领域(从诊断、治疗到生物电子学)的价值,这标志着这种生物启发技术为生物医学发展带来的又一个鼓舞人心的转折点。”
  再生医学网认为,此次CRISPR基因编辑技术的重大突破,将有望为科学家打破研究壁垒。将CRISPR和智能材料完美结合,有望为医学和生物学的研究更进一步提供助力。
关键字:CRISPR-Cas基因编辑技术,反应性智能材料
反馈
版权所有2012-2019 组织工程与再生医学网 保留所有权利
京ICP备11013684号-2