当前位置:新闻 -> 常识 -> 生物医学信号的处理方法
生物医学信号的处理方法
时间:2013-06-24 13:32:13  作者:网站编辑  来源:再生医学网
技术自然界中广泛的生物医学信号是连续的,人们处理生物医学信号的程序一般是先经A/D转换,将其转换成数字信号,然后送到计算机中进行处理。本文对一维信号的处理方法进行探讨。

    技术自然界中广泛的生物医学信号是连续的,人们处理生物医学信号的程序一般是先经A/D转换,将其转换成数字信号,然后送到计算机中进行处理。本文对一维信号的处理方法进行探讨。

    1  频域滤波方法频域滤波是数字滤波中常用的一种方法,是消除生物医学信号中噪声的另一种有效方法。当信号频谱与噪声频谱很小时,可用频域滤波的方法来消除干扰,频域滤波器可分为两类:FIR(Finite Impulse Response)滤波器,FIR滤波器的设计方法主要有:窗函数法,频率采样法;IIR(Infinite Impulse Response)滤波器,IIR滤波器的主要设计方法有:冲激响应不变法,双线性变换法。

    2  自适应滤波方法自适应滤波器能够跟踪和适应系统或环境的动态变化,它不需要事先知道信号或噪声的特性,通过采用期望值和负反馈值进行综合判断的方法来改变滤波器的参数。自适应滤波器的设计有两种最优准则,一种准则是使滤波器的输出达到最大的信噪比,称为匹配滤波器;另一种准则是使滤波器的输出均方估计误差为最小,这就是维纳(Wiener)滤波器。维纳滤波器是从噪声中提取信号的一种有效的方法,它是根据全部过去和当前的观测数据来估计信号的当前值,维纳滤波器要求解著名的WienerHopf方程,它是期望存在情况下的线性最优滤波器。卡尔曼(Kalman)从状态空间模型出发,提出了基于状态空间模型的线性最优滤波器即卡尔曼滤波器。

    3  混沌(Chaos)和分形(Fractal)方法混沌和分形理论是一种非线性动力学课题,混沌系统的最大特点是初值敏感性和参数敏感性,即所谓的蝴蝶效应。混沌学研究的是无序中的有序,许多现象即使遵循严格的确定性规则,但大体上仍是无法预测的,比如大气中的湍流、人心脏的跳动等。混沌事件在不同的时间标度下表现出相似的变化模式,与分形在空间标度下表现十分相象,但混沌主要讨论非线性动力系统的不稳、发散的过程。混沌与分形在脑电信号处理的应用中尤为引人注目。自本世纪二十年代发现脑电信号以来,人们对其已进行了大量的研究,然而由于脑电信号的随机性很强,始终难以找到其规律性,无法使脑电信号成为认识大脑思维以及某些属性的有用信息。究其原因是脑电信号是神经元动作电位的无规则的脑电活动,实际上只由少数独立的动力学变量控制着,因此可以用研究混沌动力学的方法来研究人脑的功能。

   4  小波分析(Wavelet Analysis)方法小波分析是传统傅里叶变换的继承和发展。由于小波的多分辨分析(Multiresolution Analysis)具有良好的空间域和频率域局部化特性,对高频采用逐渐精细的时域或空域取样步长,可以聚焦到分析对象的任意细节,从这个意义上讲,它已被人们誉为数学显微镜。目前,在心电数据的压缩、生物医学信号的信噪分离、QRS波的综合检测、脑电图EEG的时频分析、信号的提取与奇异性检测等方面有了广泛的应用。

    5  人工神经网络(Artificial Neural Networks)分析方法人工神经网络是一种模仿生物神经元结构和神经信息传递机理的信号处理方法,是由大量简单的基本单元(神经元)相互广泛联接构成的自适应非线性动态系统,其特点是:①并行计算,因此处理速度快;②分布式存贮,因此容错能力较好;③自适应学习。生物医学工程工作者采用神经网络的方法来解释许多复杂的生理现象,例如心电和脑电的识别,心电信号的压缩和医学图像的识别和处理。神经网络在微弱生理电信号的检测和处理应用主要集中在对自发脑电EEG的分析和脑干听觉诱发电位的提取。

    6  时域方法――AEV方法AEV方法原是通信研究中用于提高信噪比的一种叠加平均法,在医学研究中也叫平均诱发反应法,简称AEV(averaged evoked response)方法。所谓诱发反应就是肌体对某个外加刺激所产生的反应,AEV方法常用来检测那些微弱的生物医学信号,如希氏束电图、脑电图、耳蜗电图等。希氏束电图的信号幅度仅1~10μV,它们在用AEV方法检测之前,几乎或完全淹没在很强的噪声中,这些噪声包括自发反应、外界干扰、仪器噪声。AEV方法要求噪声是随机的,并且其协方差为零,信号是周期或重复产生的,这样经过N平方次叠加,信噪比可提高N倍,使用AEV方法的关键是寻找叠加的时间基准点。

关键字:处理方法
反馈
版权所有2012-2019 组织工程与再生医学网 保留所有权利
京ICP备11013684号-2